Personalisierungslösung epicAi wird AI MASTER 2019
WINNER  2019
Quelle: unsplash.com

Mit Machine Learning Ad Fraud bekämpfen

Während Ad Fraud in den USA bereits seit Längerem eine omnipräsente Bedrohung in der Digital Marketing Welt ist, thematisieren wir es hierzulande noch vergleichsweise wenig. Doch zunehmend erreicht der kommerzielle Werbebetrug auch Deutschland. Wir geben Ihnen in diesem Artikel einen Überblick über die Arten von Ad Fraud und die passenden Gegenmaßnahmen. Machine Learning stellt hierbei eine verlässliche und vielleicht sogar entscheidende Lösung dar.

Was ist Invalid Traffic?

Eine klare und vor allem einheitliche Definition des Begriffs Ad Fraud gibt es nicht. Das führt dazu, dass die verschiedenen Anbieter von Ad Verification Systemen Ad Fraud ebenfalls unterschiedlich identifizieren. Im Ergebnis schwanken die von ihnen erhobenen und veröffentlichten Werte teilweise stark.

Die Fokusgruppe Digital Marketing Quality des BVDW führt daher zur zukünftigen Vereinheitlichung den Begriff Invalid Traffic (IVT) ein. Dieser unterteilt sich zum Einen in General Invalid Traffic (GIVT). Hierunter fallen alle Werbekontakte von „gutartigen“ Bots. Diese geben sich als solche zu erkennen und zeigen Online Marketing Systemen an, als nicht abrechnungsrelevant aus den Reportingdaten herausgefiltert werden zu können. Manche Anbieter von Ad Fraud Detection-Lösungen rechnen diese Impressions fälschlicherweise dem Sophisticated Invalid Traffic (SIVT) zu. SIVT-Werbekontakte können einerseits Non-Human, also bspw. von programmierten Bots verursacht werden. Andererseits können sie auch von Menschen stammen, dann jedoch so manipuliert, dass sie keine Werbewirkung erzielen. SIVT erfasst alle Impressions, die mit vermeintlich betrügerischer Absicht manipuliert und erzeugt werden. Aus diesem Grund kann hier von Ad Fraud die Rede sein.

Ad Fraud Methoden

Die Methoden von Online-Betrügern sind vielfältig und ausgeklügelt. Entwickeln Tech-Unternehmen neue Lösungen, sie auffliegen zu lassen, ziehen die Fraudster nur wenig später mit ebenfalls neuen Varianten des Werbebetrugs nach. Fraud Investigation wird so zu einem Wettrennen zwischen Wirtschaftskriminalität und Data Analytics.

Click Fraud

Click Fraud bzw. Klickbetrug ist die einfachste und daher häufigste Form des Anzeigenbetrugs. Traffic wird hierbei entweder durch sogenannte Click Bots oder durch Angestellte in einer Click Farm erzeugt. Die Bots sind mittlerweile technisch so ausgefeilt, dass sie menschliches Klickverhalten authentisch nachahmen können. Sie sind beispielsweise darauf programmiert, Mausbewegungen zu imitieren oder unterschiedlich lange Pausen zwischen den Klicks zu lassen. Das macht ihre Identifikation als (non-human) SIVT kompliziert.

Lead Fraud

Ein Lead-Anbieter stellt die Art und Weise, wie ein Lead generiert wird, falsch dar. Beispielsweise können die Lead-Authentizität, das Lead-Alter oder die Website-Herkunft verfälscht werden. In diesem Fall handelt es sich um Lead Fraud. Diese Faktoren können den Kaufwert eines Leads drastisch verändern. Davon profitiert natürlich der Lead-Verkäufer, wobei der Käufer der Geschädigte ist. Sein Targeting verpufft dann wirkungslos.

Impression Fraud

Impressionsbetrug bedeutet, dass die geschaltete Werbeanzeige nicht an ihre relevante Zielgruppe ausgeliefert wird, aber die Impressions trotzdem gezählt werden. Für diese Art des Werbebetrugs gibt es verschiedene Möglichkeiten. Eine der bekanntesten Methoden ist Ad-Stacking. Hier werden verschiedene Anzeigen einfach übereinander gestapelt. Ein und derselbe Werbeplatz auf einer Website kann also mehrmals verkauft werden.

Dies ist nur kleiner Auszug von Ad Fraud Methoden. Die Liste könnte zukünftig wahrscheinlich immer wieder erweitert werden. Doch wie kann ich diese immer komplexer werdenden Betrugstaktiken aufdecken und mich dagegen schützen?

Ad Fraud Detection & Prevention Methoden

Auch auf dieser Seite gibt es verschiedenste Möglichkeiten, wiederum gegen die Betrüger vorzugehen. Im Folgenden möchte ich ein paar davon nennen.

Signature-based

Signaturbasierte Methoden nutzen spezielle Aktivitätsmuster, um verdächtiges Impressions-, Traffic- oder Klickverhalten herauszufiltern. Diese Muster oder Schemata werden mit der erfassten Aktivität verglichen. Darauffolgend muss bestimmt werden, ob es sich um auffällige, also stark vom Muster abweichende, bzw. sogar betrügerische Aktivität handelt und ob weitere Schritte eingeleitet werden müssen.

Anomaly-based

Diese Methode nutzt statistische Analysen und historische Daten, um Werbeplätze, Websites und Publisher zu überprüfen und Anomalien festzustellen. Dazu zählen beispielsweise verdächtig hoher Traffic oder fragwürdige Werbeflächenplatzierungen.

Credential-based

Methoden basierend auf Berechtigungsnachweisen wägen die Möglichkeit betrügerischer Aktivitäten ab. Es wird Reverse Crawling verwendet, wobei die Berechtigungen der auffällig gewordenen Source überprüft werden, so zum Beispiel Registrierungsdaten, Ranking oder Aktivität. Anschließend wird ein Vergleich mit den Anforderungen für Impressions durchgeführt. Außerdem wird der Wert mit vertrauenswürdigen Rankings verglichen.

Honeypot-based

Hierbei wird den Werbebetrügern eine Falle gestellt, ein sogenannter Honeypot. Ein zusätzliches Feld wird in das Online-Formular eingefügt, welches jedoch für menschliche Nutzer aufgrund eines speziellen Skripts nicht sichtbar ist. Bots hingegen füllen dieses Feld aus und verraten sich selbst. Die Bot-Aktion löst einen Mechanismus aus, der zukünftige betrügerische Aktivitäten sperrt.

Machine Learning im Kampf gegen Ad Fraud

Da sich die Methoden von Werbebetrügern immer rasanter weiterentwickeln, müssen Marketer ebenso schnell mit Gegenmaßnahmen nachziehen. Eine besonders effiziente Lösung stellt Machine Learning dar.

Im Vergleich zu menschlichen Datenanalysten arbeiten Machine Learning Algorithmen deutlich zeitsparender und genauer. Sie können eine große Menge an Daten in Echtzeit analysieren, verarbeiten und die gefundenen Aktionen sofort auswerten. Ad Fraud Aktivitäten werden damit schneller identifiziert als bisher. Fortschrittliche Modelle wie Neuronale Netze aktualisieren sich sogar autonom, um die neusten Trends widerzuspiegeln. Ein weiterer Vorteil von Machine Learning ist, dass sich die Modelle mit zunehmenden Datenmengen verbessern und effektiver arbeiten. Betrügerische Aktionen können damit auch für die Zukunft zuverlässig vorhergesagt und blockiert werden.

Haben Sie auch mit Ad Fraud zu kämpfen?

Schreiben Sie uns eine E-Mail

Unsere Blog-Beiträge:

Hier lesen Sie, für wen sich die Fördermaßnahme "Digital Jetzt" eignet und welche Fallstricke es zu beachten gilt.

Wir sind beim Makeathon 2020 der Lichtwerkstatt Jena als Partnerunternehmen dabei! Alle wichtigen Infos dazu findet ihr hier.

Wir erklären, was der Survivorship Bias mit E-Commerce zu tun hat und wie man ihn überwindet.

Es gibt viele verschiedene Data Roles. Doch worin unterscheiden sie sich eigentlich?

Das Potenzial von Data Engineering blieb lange Zeit unentdeckt. Doch mit der Digitalisierung gerät es zunehmend in den…

Mit Hilfe von Data Mining erhalten Sie neue Erkenntnisse über Ihr Unternehmen und Ihre Kunden. Wir stellen Ihnen…

Data Literacy wird immer wichtiger in unserer digitalen Welt. Und doch gibt es bisher nur wenige kompetente Datenliteraten.…

KI ist schon heute nicht mehr aus unserem Alltag wegzudenken. Mit schwacher KI stehen wir jedoch noch ganz…

Mit den Zero Party Data erscheint ein neuer Consumer-Datentyp auf der Marketing-Bildfläche. Was verbirgt sich dahinter?

Was verbirgt sich hinter dem Begriff Dark Data? Und müssen Unternehmen sich davor fürchten?

Am 11. und 12. September 2019 finden Sie uns bei der DMEXCO.

Wir haben unseren Machine Learning-Experten von seinen Monitoren weggelockt und ihm einige Fragen gestellt.

Am 24. Januar 2019 überzeugte epicinsights mit ihrer Predictive Analytics-Plattform epicAi.

Warum ist der Performance Gap eine zentrale Herausforderung für den Einsatz Künstlicher Intelligenz im E-Commerce?

Was heißt eigentlich Bottom-Up für moderne Marketing-Maßnahmen? Was sind die Vorteile?

Explorative Datenanalysen und Künstliche Intelligenz ermöglichen eine neue Ära der Effizienzsteigerung.

Wann immer ich in den letzten Jahren auf Sales- und Marketingveranstaltungen gewesen bin, kam früher oder später die…

Was meint Big Data eigentlich und wie erreiche ich auf effiziente Weise sog. "Quick Wins"?

Lesen Sie hier, wie Künstliche Intelligenz die User Experience eines Onlineshops effizienter und effektiver macht.

Was bedeuten die oftmals missverständlich benutzten Zauberworte aus der AI-Buzzword-Blackbox wirklich?

Buyer Personas sind statisch. Wir setzten stattdessen auf Smart Data- Technologien und dynamische Fluide Personas. Warum?

Fluide Personas ermöglichen es mir als Webseiten- oder Shop-Betreiber Zielgruppen endlich vollumfänglich und multidimensional zu erfassen.

Newsletter Anmeldung